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ABSTRACT 

We illustrate the use of recursion relations in the computation of certain one- 
loop h&city amplitudes containing an arbitrary number of gauge bosons. After 
a brief review of the recursion relations themselves, we discuss the resolution 
of the apparent conflict between the spinor helicity method used to solve the 
recursion relations and the dimensional regulator used in the loop integrals. We 
then outline the procedure for constructing loop amplitudes, and present two 
examples of results obtained in this manner. 

This talk will describe the use of recursion relations to compute one-loop correc- 
tions to multiple gauge boson scattering. .4 different approach to the same problem 
has been discussed by Dixon at this conference.’ 

We will begin with a brief review of the recursion relation for the double-off- 
shell quark current.2,3 We define the double-off-shell quark current Gji(Q; 1,. , n) to 
consist of the sum of all tree diagrams containing exactly one (massless) quark line 
with n on-shell gluons attached in all possible ways. The quark has momentum P 
and color index i, the antiquark momentum Q and color index j, and the Pth gluon 
has momentum ke and color index at. We take all of the momenta to flow into the 
diagram: P+Q+kr+. . +k, = 0. Berends and Giele have shown that2 

$j,(Q;l....,n)=g” C [T”“..T”‘]ji~(Q;l,...,n) 
P(l...n) 

(1) 

where CJ is the gauge coupling, T” is a representation matrix for XI(N), Q( Q; 1.. . n) 
is the color-ordered current, and the notation P( 1. n) tells us that the sum runs over 
all permutations of the gluon labels (1,. ,n}. The color-ordered current contains 
only kinematic factors, and satisfies the recursion relation 

n-1 

*(Q; 1,. >n) = - c Q(Q; I,. ,j) j(j+l,. , n) 
%+ ic, + " + F, 

j=O [Q+kl+...+k,]*' (2) 

where J(j+l, . , n) is the color-ordered gluon current. which is derived from the sum 
of all tree graphs containing exactly n-j on-shell gluons plus one off-shell gluon.* 

The recursion relation (2) is easily solved for the case of n like-helicity gluons using 
an appropriate spinor-helicity basis for the gluon polarization vectors.* Rather than 
go into the details of the solution. let us note two of its features. First, it consists of 
a sum of terms containing only two propagator factors each, instead of the maximum 
of n that might be expected. Second, for large Q, it falls off as 1/Q3. Hence, any 
integrals over Q involving just the current and no additional inverse powers of Q are 
ultraviolet divergent, bringing up the question of an appropriate regulator. 
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The (apparent) difficulty may be summarized as follows: the solution of the re- 
cursion relation relies heavily upon the use of a spinor helicity basis for the gluon 
polarization vectors. Thus, the chiral projectors i(l f -ys) play an important role. 
Unfortunately, the only viable regulator for QCD is dimensional regularization, which 
does not allow for a consistent definition of 7s. Fortunately, it is possible to separate 
the problem into two pieces in such a way that a d-dimensional definition of 75 is not 
required. 

The variant of dimensional regularization which we employ is the original imple- 
mentation by ‘t Hooft and Veltman4 in which only the loop momentum is continued 
to d dimensions; all external quantities remain in four dimensions. Denoting the d- 
dimensional loop momentum by L, we may write .C E L + m, where L contains only 
the usual four space-time components of the momentum, and m contains only the “ex- 
tra” components generated by the continuation to d dimensions. Setting m2 E -$, 
this decomposition implies that ~5. m = 0, L? = Lz - $, and Is. q = L . Q, where Q is 
any external vector. Furthermore, rri anticommutes with d and J (but not 4). At 
one loop, it is clear that the momentum shifts required to do the integration involve 
only the first four components of L. Hence, any term containing an odd number of 
factors of m integrates to zero. 

Based on these properties, we can take any expression we would have written 
for a particular amplitude using the traditional Feynman rules and rewrite it as a 
sum of terms whose numerator dependence on the loop momentum has the form 
L”’ . L”‘p*j. Since only four-dimensional vectors are contracted into the Dirac ma- 
trices in this form, we may translate these expressions into spinor helicity notation 
and solve the recursion relation as usual. The only difference is that we must keep 
track of any additional $-containing terms which may be generated along the way.” 
This procedure is only practical if many of these “extra” terms vanish, and there is a 
simple prescription for identifying those terms which do not vanish. 

Consider the loop integral which contains m powers of p2 and n denominators: 

From the discussion below, it will be obvious how to handle the case including powers 
of L. We may introduce Feynman parameters and carry out the momentum integra- 
tion by writing &LT = d4Lddm4m, with the result 

3 = -i(--1)” E(47+ ~r(l-c) l-(m-+(n-m-2+c) ~mfiz6(1- Cz)[-f(qi, ~i)]~+~-“-“. (4) 

Here f(q;, Zi) is a function of the external momenta and Feynman parameters, and 
E = (d-4)/2. Note that (4) contains an overall factor of E. Hence, the expression will 
vanish in the limit E + 0 unless one of the other factors generates a pole in e. 

‘%&I ~terms are generated because we do not expand the propagators in powers of p*. Hence, the 
numerators are effectively four-dimensional, while the denominators are d-dimensional. Accordingly, 
propagators are “cancelled” using the relation L’/I? = 1 + p*/C2. 



J(y+l ,..., n,l v..., 2) 

Fig. 1. Contributions to the n-glum scattering amplitude involving a quark loop. 

The first source of such a pole is the factor P(m-e), which is singular if m = 0. This 
term, which has no powers of $, is in some sense the “leading” term: it corresponds 
to the four-dimensional part of the numerator. 

If m 2 n-2, then the factor P(n-m-2+6) produces a pole. Power counting 
applied to such integrals reveals that they are ultraviolet divergent in four dimensions 
($ counts as two powers of loop momentum, just like L2). Such terms occur only in 
the last stages of solution of the recursion relation, or in certain graphs with only a 
few legs attached to the loop. Furthermore, if m = n-2, the parameter integral is 
trivial to compute. This case comes up quite often, and the result is simple.5 

The final potential source of poles in E is the parameter integral. These are only 
infrared in nature. The exponent of -f(Qi, 2;) is the one corresponding to a theory in 
4+2m dimensions, where logarithmic infrared divergences disappear (m 2 1). Thus, 
in the vast majority of cases, the parameter integral is finite. 

We may summarize the above by the following two statements. First, integrals 
containing no numerator powers of $ must always be computed. Second, integrals 
containing one or more powers of $ contribute only if they would be ultraviolet 
divergent in four dimensions. 

Armed with this knowledge, we are ready to proceed to a description of amplitude 
building based upon the recursion relation solutions. The first step is to “glue” one or 
more currents together with one or more of the vertices of the theory. For example, 
all of the contributions to the n-gluon amplitude that proceed through a quark loop 
are represented by Fig. 1, which consists of a double-off-shell quark current and a 
gluon current tied together at a single qqg vertex. Notice that in order to obtain all 
of the diagrams of this type, we must perform a sum over all of the ways to divide 
the n gluons between the two currents. Thus, the next step in the procedure is to 
perform as much of this algebra as possible. It is beneficial to watch for and take 
advantage of opportunities to reduce the number of propagators in each of the terms 
of the expression. 

Once the contributions to the integrand are as simple as possible, we perform the 
momentum integration. The shift in loop momentum required for each term is deter- 
mined and applied to the numerators. The parameter integrals are then performed 
using the differentiation method of Bern, Dixon and Kosower,s which allows inte- 
grals containing extra numerator factors of the Feynman parameters to be written as 
derivatives of the corresponding scalar integral. The differentiation process is simple 



enough to let us prepare a table of such integrals. Given this table, it is straightfor- 
ward to cancel any spurious divergences introduced in the reduction process, At this 
stage, all that remains is to “clean up” the result. 

We now present two examples of results obtained by the above procedure. The 
first is for the process y-y -+ 7.. . y, for the helicity configuration (--++ . +).bThis 
calculation involves at worst box integrals-no higher point functions appear, even 
for an arbitrary number of photons. The result for even n 2 6 reads 

d(l-,2-,3+ ,,.., n+) = - [(l 3e 3)‘G aI* A(3>. ,j) 
p(Q...n) j=4 (3 4)(4 5, ” tn 3, (2k3 ’ kj)' ' 15) 

where the spinor inner products (i j) satisfy (i j)(i j)’ = 2ki kj. The function 
A(3,. ,j) is a particular combination of dilogarithms given by 

A(3,. ,j) = Liz 

with q(i,j) K kz+k;+ ... +kj. Although it is not immediately obvious, Eq. 5 is 
indeed symmetric under the interchange kl ff kz, as dictated by Bose statistics. 

The second example is the expression for the quark-loop contributions to the 
scattering of n like-helicity gluons3 We find 

d(l+> , n’) = - 

where ~(l,j) = k,+...+lc,. 
(7) 

In this talk, we have illustrated the use of recursion relations to simplify the 
computation of certain loop amplitudes containing an arbitrary number of external 
gauge bosons. Although there is still much work to be done before next-to-leading 
order cross sections may be extracted from these expressions, a great deal of progress 
has been made in this area, and real predictions are in sight on the horizon. 
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bThe h&city labels are always those for inward-directed momenta. 


